/**
|
* [Encryption rsa算法封装]
|
*/
|
module.exports = function() {
|
// Depends on jsbn.js and rng.js
|
|
// Version 1.1: support utf-8 encoding in pkcs1pad2
|
|
// convert a (hex) string to a bignum object
|
|
function parseBigInt(str, r) {
|
return new BigInteger(str, r);
|
}
|
|
function linebrk(s, n) {
|
var ret = "";
|
var i = 0;
|
while (i + n < s.length) {
|
ret += s.substring(i, i + n) + "\n";
|
i += n;
|
}
|
return ret + s.substring(i, s.length);
|
}
|
|
function byte2Hex(b) {
|
if (b < 0x10)
|
return "0" + b.toString(16);
|
else
|
return b.toString(16);
|
}
|
|
// PKCS#1 (type 2, random) pad input string s to n bytes, and return a bigint
|
function pkcs1pad2(s, n) {
|
if (n < s.length + 11) { // TODO: fix for utf-8
|
uv_alert("Message too long for RSA");
|
return null;
|
}
|
var ba = new Array();
|
var i = s.length - 1;
|
while (i >= 0 && n > 0) {
|
var c = s.charCodeAt(i--);
|
ba[--n] = c;
|
/* if(c < 128) { // encode using utf-8
|
ba[--n] = c;
|
}
|
else if((c > 127) && (c < 2048)) {
|
ba[--n] = (c & 63) | 128;
|
ba[--n] = (c >> 6) | 192;
|
}
|
else {
|
ba[--n] = (c & 63) | 128;
|
ba[--n] = ((c >> 6) & 63) | 128;
|
ba[--n] = (c >> 12) | 224;
|
}*/
|
}
|
ba[--n] = 0;
|
var rng = new SecureRandom();
|
var x = new Array();
|
while (n > 2) { // random non-zero pad
|
x[0] = 0;
|
while (x[0] == 0) rng.nextBytes(x);
|
ba[--n] = x[0];
|
}
|
ba[--n] = 2;
|
ba[--n] = 0;
|
return new BigInteger(ba);
|
}
|
|
// "empty" RSA key constructor
|
function RSAKey() {
|
this.n = null;
|
this.e = 0;
|
this.d = null;
|
this.p = null;
|
this.q = null;
|
this.dmp1 = null;
|
this.dmq1 = null;
|
this.coeff = null;
|
}
|
|
// Set the public key fields N and e from hex strings
|
function RSASetPublic(N, E) {
|
if (N != null && E != null && N.length > 0 && E.length > 0) {
|
this.n = parseBigInt(N, 16);
|
this.e = parseInt(E, 16);
|
} else
|
uv_alert("Invalid RSA public key");
|
}
|
|
// Perform raw public operation on "x": return x^e (mod n)
|
function RSADoPublic(x) {
|
return x.modPowInt(this.e, this.n);
|
}
|
|
// Return the PKCS#1 RSA encryption of "text" as an even-length hex string
|
function RSAEncrypt(text) {
|
var m = pkcs1pad2(text, (this.n.bitLength() + 7) >> 3);
|
if (m == null) return null;
|
var c = this.doPublic(m);
|
if (c == null) return null;
|
var h = c.toString(16);
|
if ((h.length & 1) == 0) return h;
|
else return "0" + h;
|
}
|
|
// Return the PKCS#1 RSA encryption of "text" as a Base64-encoded string
|
//function RSAEncryptB64(text) {
|
// var h = this.encrypt(text);
|
// if(h) return hex2b64(h); else return null;
|
//}
|
|
// protected
|
RSAKey.prototype.doPublic = RSADoPublic;
|
|
// public
|
RSAKey.prototype.setPublic = RSASetPublic;
|
RSAKey.prototype.encrypt = RSAEncrypt;
|
//RSAKey.prototype.encrypt_b64 = RSAEncryptB64;
|
|
|
//==================================================jsbn.js======================================================================//
|
|
// Copyright (c) 2005 Tom Wu
|
// All Rights Reserved.
|
// See "LICENSE" for details.
|
|
// Basic JavaScript BN library - subset useful for RSA encryption.
|
|
// Bits per digit
|
var dbits;
|
|
// JavaScript engine analysis
|
var canary = 0xdeadbeefcafe;
|
var j_lm = ((canary & 0xffffff) == 0xefcafe);
|
|
// (public) Constructor
|
function BigInteger(a, b, c) {
|
if (a != null)
|
if ("number" == typeof a) this.fromNumber(a, b, c);
|
else if (b == null && "string" != typeof a) this.fromString(a, 256);
|
else this.fromString(a, b);
|
}
|
|
// return new, unset BigInteger
|
function nbi() {
|
return new BigInteger(null);
|
}
|
|
// am: Compute w_j += (x*this_i), propagate carries,
|
// c is initial carry, returns final carry.
|
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
|
// We need to select the fastest one that works in this environment.
|
|
// am1: use a single mult and divide to get the high bits,
|
// max digit bits should be 26 because
|
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
|
function am1(i, x, w, j, c, n) {
|
while (--n >= 0) {
|
var v = x * this[i++] + w[j] + c;
|
c = Math.floor(v / 0x4000000);
|
w[j++] = v & 0x3ffffff;
|
}
|
return c;
|
}
|
// am2 avoids a big mult-and-extract completely.
|
// Max digit bits should be <= 30 because we do bitwise ops
|
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
|
function am2(i, x, w, j, c, n) {
|
var xl = x & 0x7fff,
|
xh = x >> 15;
|
while (--n >= 0) {
|
var l = this[i] & 0x7fff;
|
var h = this[i++] >> 15;
|
var m = xh * l + h * xl;
|
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
|
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
|
w[j++] = l & 0x3fffffff;
|
}
|
return c;
|
}
|
// Alternately, set max digit bits to 28 since some
|
// browsers slow down when dealing with 32-bit numbers.
|
function am3(i, x, w, j, c, n) {
|
var xl = x & 0x3fff,
|
xh = x >> 14;
|
while (--n >= 0) {
|
var l = this[i] & 0x3fff;
|
var h = this[i++] >> 14;
|
var m = xh * l + h * xl;
|
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
|
c = (l >> 28) + (m >> 14) + xh * h;
|
w[j++] = l & 0xfffffff;
|
}
|
return c;
|
}
|
// if (j_lm && (navigator.appName == "Microsoft Internet Explorer")) {
|
// BigInteger.prototype.am = am2;
|
// dbits = 30;
|
// } else if (j_lm && (navigator.appName != "Netscape")) {
|
// BigInteger.prototype.am = am1;
|
// dbits = 26;
|
// } else { // Mozilla/Netscape seems to prefer am3
|
// BigInteger.prototype.am = am3;
|
// dbits = 28;
|
// }
|
BigInteger.prototype.am = am3;
|
dbits = 28;
|
BigInteger.prototype.DB = dbits;
|
BigInteger.prototype.DM = ((1 << dbits) - 1);
|
BigInteger.prototype.DV = (1 << dbits);
|
|
var BI_FP = 52;
|
BigInteger.prototype.FV = Math.pow(2, BI_FP);
|
BigInteger.prototype.F1 = BI_FP - dbits;
|
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
|
|
// Digit conversions
|
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
|
var BI_RC = new Array();
|
var rr, vv;
|
rr = "0".charCodeAt(0);
|
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
|
rr = "a".charCodeAt(0);
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
rr = "A".charCodeAt(0);
|
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
|
|
function int2char(n) {
|
return BI_RM.charAt(n);
|
}
|
|
function intAt(s, i) {
|
var c = BI_RC[s.charCodeAt(i)];
|
return (c == null) ? -1 : c;
|
}
|
|
// (protected) copy this to r
|
function bnpCopyTo(r) {
|
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
|
r.t = this.t;
|
r.s = this.s;
|
}
|
|
// (protected) set from integer value x, -DV <= x < DV
|
function bnpFromInt(x) {
|
this.t = 1;
|
this.s = (x < 0) ? -1 : 0;
|
if (x > 0) this[0] = x;
|
else if (x < -1) this[0] = x + DV;
|
else this.t = 0;
|
}
|
|
// return bigint initialized to value
|
function nbv(i) {
|
var r = nbi();
|
r.fromInt(i);
|
return r;
|
}
|
|
// (protected) set from string and radix
|
function bnpFromString(s, b) {
|
var k;
|
if (b == 16) k = 4;
|
else if (b == 8) k = 3;
|
else if (b == 256) k = 8; // byte array
|
else if (b == 2) k = 1;
|
else if (b == 32) k = 5;
|
else if (b == 4) k = 2;
|
else {
|
this.fromRadix(s, b);
|
return;
|
}
|
this.t = 0;
|
this.s = 0;
|
var i = s.length,
|
mi = false,
|
sh = 0;
|
while (--i >= 0) {
|
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
|
if (x < 0) {
|
if (s.charAt(i) == "-") mi = true;
|
continue;
|
}
|
mi = false;
|
if (sh == 0)
|
this[this.t++] = x;
|
else if (sh + k > this.DB) {
|
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
|
this[this.t++] = (x >> (this.DB - sh));
|
} else
|
this[this.t - 1] |= x << sh;
|
sh += k;
|
if (sh >= this.DB) sh -= this.DB;
|
}
|
if (k == 8 && (s[0] & 0x80) != 0) {
|
this.s = -1;
|
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
|
}
|
this.clamp();
|
if (mi) BigInteger.ZERO.subTo(this, this);
|
}
|
|
// (protected) clamp off excess high words
|
function bnpClamp() {
|
var c = this.s & this.DM;
|
while (this.t > 0 && this[this.t - 1] == c) --this.t;
|
}
|
|
// (public) return string representation in given radix
|
function bnToString(b) {
|
if (this.s < 0) return "-" + this.negate().toString(b);
|
var k;
|
if (b == 16) k = 4;
|
else if (b == 8) k = 3;
|
else if (b == 2) k = 1;
|
else if (b == 32) k = 5;
|
else if (b == 4) k = 2;
|
else return this.toRadix(b);
|
var km = (1 << k) - 1,
|
d, m = false,
|
r = "",
|
i = this.t;
|
var p = this.DB - (i * this.DB) % k;
|
if (i-- > 0) {
|
if (p < this.DB && (d = this[i] >> p) > 0) {
|
m = true;
|
r = int2char(d);
|
}
|
while (i >= 0) {
|
if (p < k) {
|
d = (this[i] & ((1 << p) - 1)) << (k - p);
|
d |= this[--i] >> (p += this.DB - k);
|
} else {
|
d = (this[i] >> (p -= k)) & km;
|
if (p <= 0) {
|
p += this.DB;
|
--i;
|
}
|
}
|
if (d > 0) m = true;
|
if (m) r += int2char(d);
|
}
|
}
|
return m ? r : "0";
|
}
|
|
// (public) -this
|
function bnNegate() {
|
var r = nbi();
|
BigInteger.ZERO.subTo(this, r);
|
return r;
|
}
|
|
// (public) |this|
|
function bnAbs() {
|
return (this.s < 0) ? this.negate() : this;
|
}
|
|
// (public) return + if this > a, - if this < a, 0 if equal
|
function bnCompareTo(a) {
|
var r = this.s - a.s;
|
if (r != 0) return r;
|
var i = this.t;
|
r = i - a.t;
|
if (r != 0) return r;
|
while (--i >= 0)
|
if ((r = this[i] - a[i]) != 0) return r;
|
return 0;
|
}
|
|
// returns bit length of the integer x
|
function nbits(x) {
|
var r = 1,
|
t;
|
if ((t = x >>> 16) != 0) {
|
x = t;
|
r += 16;
|
}
|
if ((t = x >> 8) != 0) {
|
x = t;
|
r += 8;
|
}
|
if ((t = x >> 4) != 0) {
|
x = t;
|
r += 4;
|
}
|
if ((t = x >> 2) != 0) {
|
x = t;
|
r += 2;
|
}
|
if ((t = x >> 1) != 0) {
|
x = t;
|
r += 1;
|
}
|
return r;
|
}
|
|
// (public) return the number of bits in "this"
|
function bnBitLength() {
|
if (this.t <= 0) return 0;
|
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
|
}
|
|
// (protected) r = this << n*DB
|
function bnpDLShiftTo(n, r) {
|
var i;
|
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
|
for (i = n - 1; i >= 0; --i) r[i] = 0;
|
r.t = this.t + n;
|
r.s = this.s;
|
}
|
|
// (protected) r = this >> n*DB
|
function bnpDRShiftTo(n, r) {
|
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
|
r.t = Math.max(this.t - n, 0);
|
r.s = this.s;
|
}
|
|
// (protected) r = this << n
|
function bnpLShiftTo(n, r) {
|
var bs = n % this.DB;
|
var cbs = this.DB - bs;
|
var bm = (1 << cbs) - 1;
|
var ds = Math.floor(n / this.DB),
|
c = (this.s << bs) & this.DM,
|
i;
|
for (i = this.t - 1; i >= 0; --i) {
|
r[i + ds + 1] = (this[i] >> cbs) | c;
|
c = (this[i] & bm) << bs;
|
}
|
for (i = ds - 1; i >= 0; --i) r[i] = 0;
|
r[ds] = c;
|
r.t = this.t + ds + 1;
|
r.s = this.s;
|
r.clamp();
|
}
|
|
// (protected) r = this >> n
|
function bnpRShiftTo(n, r) {
|
r.s = this.s;
|
var ds = Math.floor(n / this.DB);
|
if (ds >= this.t) {
|
r.t = 0;
|
return;
|
}
|
var bs = n % this.DB;
|
var cbs = this.DB - bs;
|
var bm = (1 << bs) - 1;
|
r[0] = this[ds] >> bs;
|
for (var i = ds + 1; i < this.t; ++i) {
|
r[i - ds - 1] |= (this[i] & bm) << cbs;
|
r[i - ds] = this[i] >> bs;
|
}
|
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
|
r.t = this.t - ds;
|
r.clamp();
|
}
|
|
// (protected) r = this - a
|
function bnpSubTo(a, r) {
|
var i = 0,
|
c = 0,
|
m = Math.min(a.t, this.t);
|
while (i < m) {
|
c += this[i] - a[i];
|
r[i++] = c & this.DM;
|
c >>= this.DB;
|
}
|
if (a.t < this.t) {
|
c -= a.s;
|
while (i < this.t) {
|
c += this[i];
|
r[i++] = c & this.DM;
|
c >>= this.DB;
|
}
|
c += this.s;
|
} else {
|
c += this.s;
|
while (i < a.t) {
|
c -= a[i];
|
r[i++] = c & this.DM;
|
c >>= this.DB;
|
}
|
c -= a.s;
|
}
|
r.s = (c < 0) ? -1 : 0;
|
if (c < -1) r[i++] = this.DV + c;
|
else if (c > 0) r[i++] = c;
|
r.t = i;
|
r.clamp();
|
}
|
|
// (protected) r = this * a, r != this,a (HAC 14.12)
|
// "this" should be the larger one if appropriate.
|
function bnpMultiplyTo(a, r) {
|
var x = this.abs(),
|
y = a.abs();
|
var i = x.t;
|
r.t = i + y.t;
|
while (--i >= 0) r[i] = 0;
|
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
|
r.s = 0;
|
r.clamp();
|
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
|
}
|
|
// (protected) r = this^2, r != this (HAC 14.16)
|
function bnpSquareTo(r) {
|
var x = this.abs();
|
var i = r.t = 2 * x.t;
|
while (--i >= 0) r[i] = 0;
|
for (i = 0; i < x.t - 1; ++i) {
|
var c = x.am(i, x[i], r, 2 * i, 0, 1);
|
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV) {
|
r[i + x.t] -= x.DV;
|
r[i + x.t + 1] = 1;
|
}
|
}
|
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
|
r.s = 0;
|
r.clamp();
|
}
|
|
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
|
// r != q, this != m. q or r may be null.
|
function bnpDivRemTo(m, q, r) {
|
var pm = m.abs();
|
if (pm.t <= 0) return;
|
var pt = this.abs();
|
if (pt.t < pm.t) {
|
if (q != null) q.fromInt(0);
|
if (r != null) this.copyTo(r);
|
return;
|
}
|
if (r == null) r = nbi();
|
var y = nbi(),
|
ts = this.s,
|
ms = m.s;
|
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
|
if (nsh > 0) {
|
pm.lShiftTo(nsh, y);
|
pt.lShiftTo(nsh, r);
|
} else {
|
pm.copyTo(y);
|
pt.copyTo(r);
|
}
|
var ys = y.t;
|
var y0 = y[ys - 1];
|
if (y0 == 0) return;
|
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
|
var d1 = this.FV / yt,
|
d2 = (1 << this.F1) / yt,
|
e = 1 << this.F2;
|
var i = r.t,
|
j = i - ys,
|
t = (q == null) ? nbi() : q;
|
y.dlShiftTo(j, t);
|
if (r.compareTo(t) >= 0) {
|
r[r.t++] = 1;
|
r.subTo(t, r);
|
}
|
BigInteger.ONE.dlShiftTo(ys, t);
|
t.subTo(y, y); // "negative" y so we can replace sub with am later
|
while (y.t < ys) y[y.t++] = 0;
|
while (--j >= 0) {
|
// Estimate quotient digit
|
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
|
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd) { // Try it out
|
y.dlShiftTo(j, t);
|
r.subTo(t, r);
|
while (r[i] < --qd) r.subTo(t, r);
|
}
|
}
|
if (q != null) {
|
r.drShiftTo(ys, q);
|
if (ts != ms) BigInteger.ZERO.subTo(q, q);
|
}
|
r.t = ys;
|
r.clamp();
|
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
|
if (ts < 0) BigInteger.ZERO.subTo(r, r);
|
}
|
|
// (public) this mod a
|
function bnMod(a) {
|
var r = nbi();
|
this.abs().divRemTo(a, null, r);
|
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
|
return r;
|
}
|
|
// Modular reduction using "classic" algorithm
|
function Classic(m) {
|
this.m = m;
|
}
|
|
function cConvert(x) {
|
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
|
else return x;
|
}
|
|
function cRevert(x) {
|
return x;
|
}
|
|
function cReduce(x) {
|
x.divRemTo(this.m, null, x);
|
}
|
|
function cMulTo(x, y, r) {
|
x.multiplyTo(y, r);
|
this.reduce(r);
|
}
|
|
function cSqrTo(x, r) {
|
x.squareTo(r);
|
this.reduce(r);
|
}
|
|
Classic.prototype.convert = cConvert;
|
Classic.prototype.revert = cRevert;
|
Classic.prototype.reduce = cReduce;
|
Classic.prototype.mulTo = cMulTo;
|
Classic.prototype.sqrTo = cSqrTo;
|
|
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
|
// justification:
|
// xy == 1 (mod m)
|
// xy = 1+km
|
// xy(2-xy) = (1+km)(1-km)
|
// x[y(2-xy)] = 1-k^2m^2
|
// x[y(2-xy)] == 1 (mod m^2)
|
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
|
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
|
// JS multiply "overflows" differently from C/C++, so care is needed here.
|
function bnpInvDigit() {
|
if (this.t < 1) return 0;
|
var x = this[0];
|
if ((x & 1) == 0) return 0;
|
var y = x & 3; // y == 1/x mod 2^2
|
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
|
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
|
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
|
// last step - calculate inverse mod DV directly;
|
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
|
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
|
// we really want the negative inverse, and -DV < y < DV
|
return (y > 0) ? this.DV - y : -y;
|
}
|
|
// Montgomery reduction
|
function Montgomery(m) {
|
this.m = m;
|
this.mp = m.invDigit();
|
this.mpl = this.mp & 0x7fff;
|
this.mph = this.mp >> 15;
|
this.um = (1 << (m.DB - 15)) - 1;
|
this.mt2 = 2 * m.t;
|
}
|
|
// xR mod m
|
function montConvert(x) {
|
var r = nbi();
|
x.abs().dlShiftTo(this.m.t, r);
|
r.divRemTo(this.m, null, r);
|
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
|
return r;
|
}
|
|
// x/R mod m
|
function montRevert(x) {
|
var r = nbi();
|
x.copyTo(r);
|
this.reduce(r);
|
return r;
|
}
|
|
// x = x/R mod m (HAC 14.32)
|
function montReduce(x) {
|
while (x.t <= this.mt2) // pad x so am has enough room later
|
x[x.t++] = 0;
|
for (var i = 0; i < this.m.t; ++i) {
|
// faster way of calculating u0 = x[i]*mp mod DV
|
var j = x[i] & 0x7fff;
|
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
|
// use am to combine the multiply-shift-add into one call
|
j = i + this.m.t;
|
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
|
// propagate carry
|
while (x[j] >= x.DV) {
|
x[j] -= x.DV;
|
x[++j]++;
|
}
|
}
|
x.clamp();
|
x.drShiftTo(this.m.t, x);
|
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
|
}
|
|
// r = "x^2/R mod m"; x != r
|
function montSqrTo(x, r) {
|
x.squareTo(r);
|
this.reduce(r);
|
}
|
|
// r = "xy/R mod m"; x,y != r
|
function montMulTo(x, y, r) {
|
x.multiplyTo(y, r);
|
this.reduce(r);
|
}
|
|
Montgomery.prototype.convert = montConvert;
|
Montgomery.prototype.revert = montRevert;
|
Montgomery.prototype.reduce = montReduce;
|
Montgomery.prototype.mulTo = montMulTo;
|
Montgomery.prototype.sqrTo = montSqrTo;
|
|
// (protected) true iff this is even
|
function bnpIsEven() {
|
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
|
}
|
|
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
|
function bnpExp(e, z) {
|
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
|
var r = nbi(),
|
r2 = nbi(),
|
g = z.convert(this),
|
i = nbits(e) - 1;
|
g.copyTo(r);
|
while (--i >= 0) {
|
z.sqrTo(r, r2);
|
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
|
else {
|
var t = r;
|
r = r2;
|
r2 = t;
|
}
|
}
|
return z.revert(r);
|
}
|
|
// (public) this^e % m, 0 <= e < 2^32
|
function bnModPowInt(e, m) {
|
var z;
|
if (e < 256 || m.isEven()) z = new Classic(m);
|
else z = new Montgomery(m);
|
return this.exp(e, z);
|
}
|
|
// protected
|
BigInteger.prototype.copyTo = bnpCopyTo;
|
BigInteger.prototype.fromInt = bnpFromInt;
|
BigInteger.prototype.fromString = bnpFromString;
|
BigInteger.prototype.clamp = bnpClamp;
|
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
|
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
|
BigInteger.prototype.lShiftTo = bnpLShiftTo;
|
BigInteger.prototype.rShiftTo = bnpRShiftTo;
|
BigInteger.prototype.subTo = bnpSubTo;
|
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
|
BigInteger.prototype.squareTo = bnpSquareTo;
|
BigInteger.prototype.divRemTo = bnpDivRemTo;
|
BigInteger.prototype.invDigit = bnpInvDigit;
|
BigInteger.prototype.isEven = bnpIsEven;
|
BigInteger.prototype.exp = bnpExp;
|
|
// public
|
BigInteger.prototype.toString = bnToString;
|
BigInteger.prototype.negate = bnNegate;
|
BigInteger.prototype.abs = bnAbs;
|
BigInteger.prototype.compareTo = bnCompareTo;
|
BigInteger.prototype.bitLength = bnBitLength;
|
BigInteger.prototype.mod = bnMod;
|
BigInteger.prototype.modPowInt = bnModPowInt;
|
|
// "constants"
|
BigInteger.ZERO = nbv(0);
|
BigInteger.ONE = nbv(1);
|
|
//====================================================rng.js===================================================================//
|
// Random number generator - requires a PRNG backend, e.g. prng4.js
|
|
// For best results, put code like
|
// <body onClick='rng_seed_time();' onKeyPress='rng_seed_time();'>
|
// in your main HTML document.
|
|
var rng_state;
|
var rng_pool;
|
var rng_pptr;
|
|
// Mix in a 32-bit integer into the pool
|
function rng_seed_int(x) {
|
rng_pool[rng_pptr++] ^= x & 255;
|
rng_pool[rng_pptr++] ^= (x >> 8) & 255;
|
rng_pool[rng_pptr++] ^= (x >> 16) & 255;
|
rng_pool[rng_pptr++] ^= (x >> 24) & 255;
|
if (rng_pptr >= rng_psize) rng_pptr -= rng_psize;
|
}
|
|
// Mix in the current time (w/milliseconds) into the pool
|
function rng_seed_time() {
|
rng_seed_int(new Date().getTime());
|
}
|
|
// Initialize the pool with junk if needed.
|
if (rng_pool == null) {
|
rng_pool = new Array();
|
rng_pptr = 0;
|
var t;
|
// if (navigator.appName == "Netscape" && navigator.appVersion < "5" && window.crypto && window.crypto.random) {
|
// // Extract entropy (256 bits) from NS4 RNG if available
|
// var z = window.crypto.random(32);
|
// for (t = 0; t < z.length; ++t)
|
// rng_pool[rng_pptr++] = z.charCodeAt(t) & 255;
|
// }
|
while (rng_pptr < rng_psize) { // extract some randomness from Math.random()
|
t = Math.floor(65536 * Math.random());
|
rng_pool[rng_pptr++] = t >>> 8;
|
rng_pool[rng_pptr++] = t & 255;
|
}
|
rng_pptr = 0;
|
rng_seed_time();
|
//rng_seed_int(window.screenX);
|
//rng_seed_int(window.screenY);
|
}
|
|
function rng_get_byte() {
|
if (rng_state == null) {
|
rng_seed_time();
|
rng_state = prng_newstate();
|
rng_state.init(rng_pool);
|
for (rng_pptr = 0; rng_pptr < rng_pool.length; ++rng_pptr)
|
rng_pool[rng_pptr] = 0;
|
rng_pptr = 0;
|
//rng_pool = null;
|
}
|
// TODO: allow reseeding after first request
|
return rng_state.next();
|
}
|
|
function rng_get_bytes(ba) {
|
var i;
|
for (i = 0; i < ba.length; ++i) ba[i] = rng_get_byte();
|
}
|
|
function SecureRandom() {}
|
|
SecureRandom.prototype.nextBytes = rng_get_bytes;
|
|
|
//===============================================prng4==========================================================================//
|
// prng4.js - uses Arcfour as a PRNG
|
|
function Arcfour() {
|
this.i = 0;
|
this.j = 0;
|
this.S = new Array();
|
}
|
|
// Initialize arcfour context from key, an array of ints, each from [0..255]
|
function ARC4init(key) {
|
var i, j, t;
|
for (i = 0; i < 256; ++i)
|
this.S[i] = i;
|
j = 0;
|
for (i = 0; i < 256; ++i) {
|
j = (j + this.S[i] + key[i % key.length]) & 255;
|
t = this.S[i];
|
this.S[i] = this.S[j];
|
this.S[j] = t;
|
}
|
this.i = 0;
|
this.j = 0;
|
}
|
|
function ARC4next() {
|
var t;
|
this.i = (this.i + 1) & 255;
|
this.j = (this.j + this.S[this.i]) & 255;
|
t = this.S[this.i];
|
this.S[this.i] = this.S[this.j];
|
this.S[this.j] = t;
|
return this.S[(t + this.S[this.i]) & 255];
|
}
|
|
Arcfour.prototype.init = ARC4init;
|
Arcfour.prototype.next = ARC4next;
|
|
// Plug in your RNG constructor here
|
function prng_newstate() {
|
return new Arcfour();
|
}
|
|
// Pool size must be a multiple of 4 and greater than 32.
|
// An array of bytes the size of the pool will be passed to init()
|
var rng_psize = 256;
|
|
//rsa加密
|
function rsa_encrypt(rawValue, key, mod) {
|
//公钥
|
key = key || "F20CE00BAE5361F8FA3AE9CEFA495362FF7DA1BA628F64A347F0A8C012BF0B254A30CD92ABFFE7A6EE0DC424CB6166F8819EFA5BCCB20EDFB4AD02E412CCF579B1CA711D55B8B0B3AEB60153D5E0693A2A86F3167D7847A0CB8B00004716A9095D9BADC977CBB804DBDCBA6029A9710869A453F27DFDDF83C016D928B3CBF4C7";
|
mod = mod || "3";
|
var _RSA = new RSAKey(); //生成rsa加密对象
|
_RSA.setPublic(key, mod); //设置公钥和mod,PublicKey是1(2)中打印的hex值
|
return _RSA.encrypt(rawValue);
|
}
|
return {
|
encrypt: rsa_encrypt
|
}
|
}();
|